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The scattered field produced by a plane electromagnetic wave incident

ABSTRACT

on an infinitely long imperfectly conducting cylinder coated with a layer of
material with complex index of refraction is considered.
The geometric optics and the creeping wave contributions to the back

scattered field are obtained, for normal incidence and small wavelengths,
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1. INTRODUCTION

The determination of the high frequency radar cross section of a smooth
convex conducting body covered with one or more thin ahsorbing layers of materials
with large complex indexes of refraction (e.g. ferrites) can be greatly simplified
by observing that under certain general assumptions the total electri‘c ané magnetic
fields satisfy an impedance boundary condition on the outer surface of the outer
coating layer [-Weston, 1963].

In certain practical applications, such a scatterer is in turn covered by
another layer of material whose index of refraction is no longer large compared
to unity. It is then of great practical importance to investigate the influence that
this outer layer has on the magnitude of the far back scattered field, and therefore
on the value of the monostatic radar cross section.

The analysis is complicated by the fact that the exact boundary conditions
(1. e. the continuity of the tangential components of the total electric and magnetic
fields) must be imposed at the outer surface of the outer layer, while an impedance
bounfiary conditibn may still be assumed on it8 inner surface, as we shall see in
“
the following.

Y In this paper, the investigation is carried out for the case of an infinitely
long circular coated cylinder. It is supposed that the material of the outer coating
layer has a complex refractive index whose absolute value has & lower bound that
is only moderately large compared to unity (e.g. 1.5 or 2), and whose argument
is bounded away from both zero and 7/2. An asymptotic evaluation of the far back

scattered field is obtained in terms of the geometric optics and of the creeping




.

wave contributions, for small wavelengths and normal incidence.

The problem of scattering of plane electromagnetic waves by concentric
infinite cylinders has been considered by many authors. The first calculated
results for the case of a metal cylinder surrounded by a dielectric sleeve have
been published by Adey {1956}, who also gave a survey of the previous work on
this subject. This case has been recently reconsidered by Kodis [_1959, 1961, 1963)
and by Helstrom {1963], among others. The boundary value problem for an
arbitrary number of concentric cylinders has been solved by Kerker and
Matijevic [1961].

As far as the author knows, the case in which an impedance boundary con-
dition holds on the surface of the cylindrical core has not been previously considered.

The rationalized MKS gystem of units is used, and the time erendence factor

e wt is omitted throughout the paper.

2. THE INFINITE SERIES SOLUTION
Consider an infinitely long cylinder of radius b, coated with a layer of
constant thickness d and surrounded by free space; the radius a of the outer
surface is then equal to (b+d). The geometry of the scatterer is {llustrated in
Fig. 1, which also shows the two systems of Cartesian (x,y, z) and cylindrical
(r, @, z) coordinates.
.\ Let € uo and Z = J_;:/?; be respectively the permittivity, the per-

meability and the intrinsic impedance of free space, let @ and u be the
relative permittivity and permeability of the material of the layer, and suppose

that on the surface r = b of the cylinder the following impedance boundary



condition holds:

I = n n A - A Py
) El_(hl rir = r';ZI‘XHl,

where T 1s a unit vector directed radially from the axis z of the cylinder, El
and H1 are the total electric and magnetic fields, and n is the relative surface

impedance. The parameters €, u and n are supposed constant in space and time.

Consider the plane incident electromagnetic wave:

(2) eV - _zu .

Z y

{kx
e

h = = A he f .
where k = w 'eouo 27/X is the free space wave number

The wave number k1 of the coating is related to the index of refraction
N = J/g; by the expression

k, = Nk. v
1

The incident wave is propagating in the positive x direction, perpendicu-

larly to the axis z of the cylinder, and is polarized in the (x, z) plane. The

(1)

results for the other polarization (E 1 parallel to the y axis) may be easily ob-
tained by replacing € and eo with 4 and uo and vice versa, E with H, H with
-E, and n with r;—l, throughout the paper [Senlor, 1962].

The scattered electric field is given by

E(S) = ih i"a H(l)(kr)cosn¢ s
n n

7z — n
(3)
E(s) i} E(s) . 0
X y
where ho = 1 and hn =2 forn=1,2, etc.



The constants an are determined by imposing the boundary conditions,
{.e. the continuity of the tangential components of the total electric and magnetic
tields across the outer surface r = a, and the impedance boundary condition (1)

at the inner surface r =b. One finds:

J'(ka) - A J (ka)
n nn

(4 = -
2 (1) (1) ’

H ' (ka) - A H (ka)
n nn
where
-3 N _ 9 In 8Cn
atnCc ) U Bk b) a(k.a)
(5) A = 2 = ! L=
n M D(kla) L N 8(,IJNCn)
-m 5(k.b)
1
with
(6) c =g ko kb -d ko E Nk a)
n n 1! n 1 n 1 n 1

By making use of the results of Leontovich as discussed by Weston [-1963},
one finds that the impedance boundary condition (1) at r =b 1is a very good approx-
imation provided that the index of refraction of the absorber is very large and has
a large imaginary part, and that the radius b 1s large compared to the wavelength
ingide the absorber.

For an absorbing layer of thickness A, relative permittivity € and relative
permeability u backed by a metal core, the relative impedance n on its outer

surface r =b is given by the expression:

(7) N~ - ’ﬁ' tan(k Afen’) .
EY

A rigorous derivation of (7) and of similar expressions for the case of



several absorbing layers may be obtained by considering the exact solution of
the corresponding boundary value problem, and by applyving to this solution a
procedurc similar to the one used by Weston and Hemenger [1962—} for the coated
sphere.

No particular expression for n will be assumed in this paper; then n could
not only represent the effect of absorbing layers, but could account for the finite
conductivity of the core, or for the roughness of its surface [Senior, 1960].

In the following it will be assumed that

(8) ¢)<argN<12-¢)'
with

-23 . -1
() $>> ‘k1d| , ¢ >> kb T,

and that ‘ k1d| is not large compared to unity.

3. HIGH FREQUENCY BACKSCATTERED FIELD: GEOMETRIC
OPTICS CONTRIBUTION
The intensity of the scattered electric field is given by relation (3), which

in the case of the backscattered far field becomes

tkr -1 %
1
(10) E(b'S) ~ (i— e "n +2 ? -0%a }
b4 7 kr i o n
L n=1

Treating the summation over n as a residue series, the summation is
replaced by a contour integral C in the complex v plane taken in the clockwise

direction around the poles at v = 1,2, ..., giving:



ikr i,r 1a
) -
(11) E(b's' ~ /———2 e [a +j Y dv} .
z rkr 0 C sinwv

Follow ing a Watson-type transform technique, the contour C is deformed
to include the poles of the integrand which lie in the first quadrant.
The asymptotic evaluation of the line integral and of the term containing

ao for large ka gives the geometric optics contribution to the far backscattered

field:
[(b.s.) n-1 [a ikr-i2ka
E ™~ A on € x
Z n 1 2r
.0,
(12)
ek 2 LG ) ] |
2ka | 8 .2 U .2
L “- n-1 N
where :
L v B [ . . E]
(13) n iy tan kld arctan(lnu) ,

N
— cotgk_ d k. d
1 1 N 2
(14) p = v 3 {1+(n-)}- '12kd {1—(n§) inEtankd ,
L+in~ cotgk d H s e%y H w1
u

If welet a go to infinity, we find the field that would be reflected by a
plane of surface impedance n coated with a layer of thickness d and refractive
index N, for normal incidence.

In the case of a perfectly conducting cylinder (d=0, n=0), relation (12) becomes

_,l
(15) Ez(b.s.),

2 —Jg.o.
d=0, n=0

‘fa ikr - i2ka 5i
- — —.———+
~ 2!‘ e <1+ 16] ...).



This formula checks with the result obtained by Imai gr1954].
If the core is perfectly conducting and the material of the coating is a

(lossy) dielectric (n 0, u=1),

(16) Jg _F ikr - i2ka

In order to compare (16) with the geometric optics term of Kodis [1963] :

1 1

"N+itank,d
—lta.nkd

(o] (@ ke-izka[1-N
"z |g.o. or 1+N

(17)

2 Nb 1+N

o8]

- - : S

L _4N (1+84) {1 N812k1d} },
N -1 s=

observe that since Im k1 is positive, only the lowest values of s are of im-

portance, and therefore

[ +§9>-% +o (L
(18) \\1 N ~1 O(kb),
provided that S ax is not large compared to (2N)/(kd). Relation (16) is

then easily obtained from (17) and (18).

4. HIGH FREQUENCY BACKSCATTERED FIELD: CREEPING
WAVE CONTRIBUTION

The creeping wave contribution to the backscattering far field is given by

the residue series:

E(b.s.)—‘l 4 lkr-x—
z ka
(19) ' -1
E v B ) 2 {H(l) (ka) - A H‘“(ka%]
ov v vV v
v:



where v are the roots of
S

) )
(20 H(1 (ka) - A H<1 (ka) =0
v vV v
which have positive imaginary parts.

Since the main contribution arises from the roots of {(20) which are close to

ka, we introduce the Fock asymptotic approximation

H(l)(ka)N - \/i_— m_l Wl(t) ,
‘(’21‘) v T
v }' - '
H(l (ka) ~ L m 2w (t),
ﬁ 1
where:
1
(99) v = ka + mt, m = (ka /) /3

and wl(t) is the Airy integral in the Fock notation.

If we assume that the absolute value of N {8 sufficiently large compared to

unity, so that the inequalities

(23) |v—k1a|>|v’1/3 , |v—k1b] > |v|1/3

are satisfied by the first few roots of equation (20) and if

Pt <<m2,
(24)
kd t
_ — | <<
2 »
I relis
then
i t
{23) A~ - — 4+ —_
’ A1/ T)l pl 2
m
[ /,2
(26) n1=—1 = tanikd J; -1 + arctan | in N -1 ,
,‘1:2_1 L H



2uVNT- ]
(27
/ N
S oRE in scotg s \|
pkd pkd /)
and
, 12
(28) 3 = kd \/N“-- 1
With the approximations (21) and (23), the creeping wave contribution be-
comes:
~ = _— i/’_f ik
(bs) 2 \or Ty _ 2 -2
E j ~ s Vir sin (7 us) wl(ts) i) +
L ~er.w, S
(28

where ls are the roots of

. Wl(t) im t
(3 o " n TP
w1 t n1 m
\n approximate evaluation of ts gives:
p -1
1
(31) t o~ t 1+ s
S 0s mt +m3 -2
08§ "

where tos are the roots of the equation

wl'(t)
(32) - im

and may be obtained from the values of wl' (t)/wl(t) which were computed by



lLogan and Yee [1962}- when t lies in thé first .quadrant.

A detailed discussion of the creeping wave contribution to the scattered
field tor the case of a perfectly conducting core has been given by Helstrom [1963} ,
who made use of Olver's asymptotic expansion for the Hankel function.

The total backscattered field is obtained by adding together the contributions

(12) and (29,
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Fig. 1. Basic geometry for the scattering problem.
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